Journal of Organometallic Chemistry, 366 (1989) 313-331 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 09630

Metallorganische Lewis-Säuren

XXXVIII *. Monomere und verbrückte Pentacarbonyldiphosphan-rhenium-Komplexe und deren Reaktionen mit Nucleophilen

Peter Steil, Ulrich Nagel und Wolfgang Beck *

Institut für Anorganische Chemie der Universität München, Meiserstr. 1, 8000 München 2 (B.R.D.) (Eingegangen den 11. November 1988)

Abstract

Pentacarbonyltetrafluoroboratorhenium, $(OC)_5 ReFBF_3$, reacts with diphosphanes Ph_2EXEPh_2 (X = CH₂, CH₂CH₂, NH; E = P, As) to give monomeric and bridged complexes $[(OC)_5 ReEPh_2 XEPh_2]^+$, $[(OC)_5 ReEPh_2 XPh_2 ERe(CO)_5]^{2+}$. The crystal structures of $[(OC)_5 RePPh_2 NHPPh_2]^+$ and $[(OC)_5 RePPh_2 CH_2 CH_2 PPh_2^- Re(CO)_5]^{2+}$ have been determined by an X-ray diffraction study. In solution the tautomers $[(OC)_5 RePPh_2 NHPPh_2]^+$ and $[(OC)_5 RePPh_2 = NP(H)Ph_2]^+$ have been detected by NMR spectroscopy.

Attack by hydroxide and methoxide occurs at a carbonyl ligand of these complexes to give hydroxycarbonyl, hydrido and methoxycarbonyl complexes, respectively. The azide ion adds to a carbonyl ligand to give the isocyanato complexes $(NCO)(OC)_4ReEPh_2CH_2CH_2EPh_2Re(CO)_4(NCO)$ (E = P, As) and $(NCO)(OC)_4RePPh_2NHPPh_2$. The latter complex loses carbon monoxide to give $(OCN)(OC)_3RePPh_2NHPPh_2$, which was characterized by X-ray diffraction.

Zusammenfassung

Pentacarbonyltetrafluoroboratorhenium, $(OC)_5 ReFBF_3$, setzt sich mit Diphosphanen Ph₂EXEPh₂ (X = CH₂, CH₂CH₂, NH; E = P, As) zu monomeren und verbrückten Komplexen [(OC)₅ReEPh₂XEPh₂]⁺, [(OC)₅ReEPh₂XPh₂ERe(CO)₅]²⁺ um. Die Kristallstrukturen von [(OC)₅RePPh₂NHPPh₂]⁺ und [(OC)₅RePPh₂CH₂-CH₂Ph₂PRe(CO)₅]²⁺ wurden röntgenographisch bestimmt. NMR-spektroskopisch lassen sich in Lösung die Tautomeren [(OC)₅RePPh₂NHPPh₂]⁺ und [(CO)₅Re-PPh₂=NP(H)Ph₂]⁺ nachweisen. Hydroxid und Methoxid greifen an einem

^{*} XXXVII. Mitteilung siehe Ref. 1.

Carbonylliganden dieser Komplexe an und liefern Hydroxycarbonyl-, Hydridobzw. Methoxycarbonyl-Komplexe. Azid addiert sich an einen Carbonylliganden unter Bildung von Isocyanato-Komplexen (NCO)(CO)₄RePh₂CH₂CH₂Ph₂E-Re(CO)₄(NCO) bzw. (NCO)(OC)₄RePPh₂NHPPh₂. Letztere Verbindung verliert allmählich Kohlenmonoxid, wobei der röntgenographisch charakterisierte Komplex (OCN)(OC)₃RePPh₂NHPPh₂ entsteht.

A. Monomere und verbrückte Pentacarbonyl-diphosphan-rhenium-Komplexe

Diphosphane R_2PXPR_2 (X = CH₂, CH₂CH₂, NH) können als einzähnige, verbrückende oder als Chelat-Liganden auftreten [2,3]. Auf welche Weise der Ligand koordiniert, hängt – abgesehen von den Reaktionsbedingungen – von der Kettenlänge X und den Substituenten R ab [4].

In $(OC)_5 ReFBF_3$ ist der Tetrafluoroborato-Ligand nur schwach an das Metallatom gebunden [5] und wird deshalb von zweizähnigen Phosphan-Liganden unter milden Bedingungen und meist in rascher Reaktion verdrängt. Je nach eingesetztem stöchiometrischen Verhältnis der Reaktanten bilden sich die monomeren Komplexe 1a-d bzw. die verbrückten Komplexe 2a-d:

 $(OC)_5 ReFBF_3 + Ph_2 EXE'Ph_2 \rightarrow [(OC)_5 ReEPh_2 XE'Ph_2]^+ BF_4^-$

	E	Ε′	Х
1a	Р	Р	NH
1b	P	Р	CH_2
lc	Р	As	CH ₂ CH ₂
1d	As	Р	CH ₂ CH ₂

 $2(OC)_{5}ReFBF_{3} + Ph_{2}EXE'Ph_{2} \rightarrow [(OC)_{5}ReEPh_{2}XEPh_{2}Re(CO)_{5}]^{2+}(BF_{4}^{-})_{2}$

	E	Ε′	Х
2a	Р	Р	NH
2b	Р	Р	CH_2
2c	Р	Р	CH ₂ CH ₂
2d	Р	As	CH ₂ CH ₂

Der Komplex **1b** fiel immer im Gemisch mit **2b** an. Die Reaktion mit einem Moläquivalent Diphenylarsinodiphenylphosphinomethan (dadpm) führt zu einem Gemisch von zwei Komplexen **1c,d**, in welchen sowohl das Phosphor-, als auch das Arsenatom als Donor fungieren. Ein Komplex mit einzähnigem dppe konnte nicht erhalten werden. Bei der Umsetzung mit Tetraphenyldiphosphan erfolgt Spaltung der P-P-Bindung. Als Reaktionsprodukt wurde $[(OC)_5 RePPh_2H]^+BF_4^-$ (3) isoliert.

IR-Spektren

Die IR-Spektren (Tab. 1) der Komplexe 1 und 2 zeigen im Carbonylbereich ein Bandenmuster mit mindestens vier Absorptionen. Durch die sperrigen Phosphanliganden wird die für die Punktgruppe C_{4v} IR-verbotene B₁-Bande beobachtet. Die Lage der Carbonylbanden ist von der Natur von E und X praktisch unabhängig.

Kompl	ex	ν(CO)		·			ν(NH) ^b
1a	2151m	2085w	2044vs			1990sh	3270m
1b	2158m	2102w	2058vs	2048vs		1993m	
lc,d	2160m	2095m	2040vs			1993m	
2a	2156w	2145w	2097w	2045vs	2027sh	1985vw	3240w
2b	2157w		2105w	2059sh	2046vs	1985m	
2c	2158m		2090w		2050vs	1992sh	
2d	2157m		2095w		2047vs	1990sh	

Tabelle 1 IR-spektroskopische Daten von 1 und 2 (in cm⁻¹)^a

^a In CH₂Cl₂. ^b In Nujol.

Die NH-Bande ist bei dem Ether-haltigen Komplex **2a** gegenüber dem freien Liganden [6] kaum verschoben. Andererseits beweist die breite Form dieser Absorption [7] und das ¹H-NMR-Spektrum das Vorliegen von Wasserstoffbrückenbindungen $-N-H \cdots OEt_2$. Dies wurde bereits von Ellermann et al. bei Komplexen mit Bis(diphenylphosphino)amin beobachtet [8].

In 1a ist die scharfe NH-Bande durch Koordination zu größeren Wellenzahlen verschoben. Auch die Kristallstrukturanalyse zeigt hier das Fehlen von Wasserstoffbrücken.

NMR-Spektren (Tab. 2 und 3)

Die Phenylresonanzen in den ¹H-NMR-Spektren der Komplexe 1 und 2 sind wenig aussagekräftig. Die dem koordinierendem Donoratom benachbarten Methylenprotonen erfahren einen Tieffeldshift von etwa 1 ppm gegenüber dem freien Liganden. Ist die Methyleneinheit zum Koordinationszentrum β -ständig, wird die Protonenresonanz nicht mehr beeinflußt. Typisch ist auch die durch die Koordination anwachsende Kopplungskonstante zwischen dem Phosphorkern und den Protonen [9]. So steigt beispielsweise in 2b die Kopplungskonstante zwischen den Methylenprotonen und den Phosphoratomen durch die Komplexierung von 2 auf 11 Hz an. Die große Tieffeldverschiebung der Aminresonanz von 2a ist als weiterer Hinweis auf die Entschirmung des Protons durch Wasserstoffbrücken zu werten [10]. Unterstützt wird dieser Befund durch das Auftreten der Diethylether-Signale, die auch dann nicht verschwinden, wenn 2a mehrere Stunden am Hochvakuum bei 40°C getrocknet wird. 1a liegt, wie die ¹H-NMR-Spektren zeigen, als Gemisch zweier Tautomerer vor. In CD₂Cl₂ ist neben der für 1a zu erwartenden NH-Resonanz ein PH-Signal für 1a' zu sehen, das durch Kopplung mit den beiden Phosphoratomen zum Doppeldublett aufgespalten ist (${}^{1}J(PH) = 469$, ${}^{3}J(PH) = 5.13$ Hz). Die ¹J(PH)-Kopplungskonstante von 1a' ist ähnlich groß wie für HP-Phosphanimine $R_2(H)P=NR'$ [11].

$$\left[(OC)_5 \text{RePPh}_2 \text{NHPPh}_2 \right]^+ \quad \left[(OC)_5 \text{RePPh}_2 = \text{NPHPh}_2 \right]^+$$
(1a) (1a')

Ein SST-Experiment zeigte, daß – zumindest innerhalb der NMR-Zeitskala – keine gegenseitige Umwandlung $1a \rightleftharpoons 1a'$ stattfindet. Die verbrückten Komplexe 2 liefern nur ein Signal im ³¹P-NMR-Spektrum, womit deren symmetrische Struktur bewiesen wird. Durch die Koordination erfahren die Phosphorsignale gegenüber den

Komplex	δ(Ph)	$\delta(\alpha$ -CH)	$\delta(\beta$ -CH)	Sonstige
1a,a'	7.3–7.7(m)			7.75(dd) PH
				4.92(br) NH
1b	7.2-7.5(m)	3.66(dd)		
1c,d	7.6 - 7.3(t)	3.1(br)	$2.2(br)^{a}$	
	7.3(s)			
2a	7.2 - 7.6(m)			6.20(t) NH
				3.44(q) Et ₂ O
				1.15(t)
2b	7.2 - 7.7(m)	4.13(t)		
2c	7.6-7.7(m)	3.02(s)		
2d	7.6-7.7(m)	3.10(br)		

H-NMR-spektroskopische Daten von	1 und 2 (ppm, in CD_2C	Cl ₂ , Lösungsmittel als inter	ner Standard)
----------------------------------	--------------------------	---	---------------

^a In Aceton.

freien Liganden einen Tieffeldshift [12]. Lediglich **2a** bildet hier, wie bereits früher beobachtet [3], eine Ausnahme. Komplexer gestaltet sich das ¹H-gekoppelte ³¹P-NMR-Spektrum der Komplexe **1a/1a'**. Insgesamt sind drei Resonanzen zu beobachten: ein Doppeldublett (4 ppm) kommt durch ¹J(PH)-Kopplung (¹J(PH) = 470 Hz) sowie durch die Kopplung der beiden nicht äquivalenten Phosphoratome (²J(PNP) = 45 Hz) zustande. Ferner erscheint ein Dublett bei 30 ppm, sowie ein im Vergleich zum freien Liganden [13] in seiner Lage nahezu unverändertes Signal bei 40 ppm. Eine eindeutige Zuordnung kann hier nicht getroffen werden, zumal nur drei ³¹P-Signal-Gruppen beobachtet werden. Vermutlich fallen die Signale für die koordinierten P-Atome in **1a** und **1a'** zusammen. Im ³¹P-¹H-entkoppelten Spektrum fällt das Doppeldublett bei 4 ppm zu einem Dublett zusammen, wodurch dessen Zuordnung zu unkoordiniertem P-Atom von **1a'** gesichert wird.

Das ³¹P-Spektrum der Komplexe **1c** und **1d** weist gegenüber dem freien Liganden ein tieffeldverschobenes, breites Signal bzw. ein nahezu lagekonstantes, scharfes Signal auf. Dies beweist, daß die Koordination des dadpm-Liganden in einem Fall über das Phosphoratom, im anderen über das Arsenatom erfolgt.

Die Identifizierung des Komplexes 3 erfolgt über einen Vergleich mit Literaturdaten [1]. Wie 1a' zeigt das ¹H-NMR-Spektrum von 3 ein Dublett infolge einer P-H-Kopplung mit einer Kopplungskonstante ¹J(PH) 415 Hz.

Verb.	δ (P-unkoord.)	$\delta(\mathbf{P}\text{-koord.})$	δ(PH)	
la	40(d)	30(d)	4(dd)	
1b	-23(d)	-2(d)		
le	N	$-3(s)^{a}$		
1đ	$-13(s)^{a}$			
2a		45(s)		
2Ъ		-2(s)		
2c		-4(s)		
2d		-3(s)		

Tabelle 3

³¹P-NMR-spektroskopische Daten von 1 und 2 (ppm, in CH₂Cl₂, H₃PO₄ als externer Standard)

^a Aceton.

Tabelle 2

Fig. 1. Struktur von 1a im Kristall.

Strukturen von 1a und 2c im Kristall (Tab. 4 und 5)

Die Struktur von 1a im Kristall (Fig. 1) zeigt eine nahezu oktaedrische Anordnung der Liganden um das Zentralatom. Ein signifikanter *trans*-Einfluß des Phosphanliganden, der sich in einer Verkürzung der Re(1)–C(2)-Bindung äußern würde, ist nicht festzustellen. Der Winkel P(1)–N(1)–P(2) in 1a weicht mit 121° stark vom Tetraederwinkel ab. Die P–N-Abstände sind, wie schon bei anderen Carbonyl-Komplexen von Ph₂PNHPPh₂ festgestellt wurde [14], stark verkürzt. Die Bindungswinkel an P(2) betragen maximal 103°. Für 1a' wären größere Bindungswinkel am vierbindigen Phosphoratom zu erwarten [15].

Auch der Komplex 2c zeigt die erwartete oktaedrische Anordnung der Liganden um das Rheniumatom (Fig. 2). Mit 194 ppm ist der Re(1)–C(5)-Abstand – *trans* zum Phosphan-Donor – deutlich kürzer als die übrigen Re(1)–C-Bindungen. Die Phosphoratome sind verzerrt tetraedrisch von den Substituenten umgeben.

B. Reaktionen der Bis(phosphan)- und Phosphanarsankomplexe 1 und 2 mit Nucleophilen

Die hohe Lage der A_1^2 -Bande in den Komplexen 1 und 2 zeigt, daß die *cis*-ständigen Carbonylliganden stark elektrophil sind [16]. Daher werden als Produkte der Reaktionen von 1 und 2 mit Nucleophilen disubstituierte Tetracarbonylkomplexe mit *cis*-ständigen Hetero-Liganden erhalten.

Reaktionen von 1 und 2 mit Hydroxidionen in wäßriger Lösung

Die Umsetzung von 1a mit Hydroxidionen führt in einer Hieber-Base-Reaktion [17] zu dem stabilen Hydroxycarbonylkomplex 4a

$$[(OC)_5 \text{RePPh}_2 \text{NHPPh}_2]^+ + OH^- \rightarrow \text{HOOC}(OC)_4 \text{RePPh}_2 \text{NHPPh}_2 (1a) (4a)$$

Tabelle 4a

Atomkoordinaten (×10⁴) und isotrope Thermalparameter ($pm^2 \times 10^{-1}$) von 1a

Atom	X	у	2	U
Re(1)	3176(1)	6750(1)	7356(1)	45(1) <i>a</i>
C(1)	4116(10)	8040(16)	7085(7)	59(4)
O(1)	4654(8)	8757(12)	6932(6)	83(4)
Č(2)	3951(11)	6375(16)	8151(8)	60(5)
O(2)	4344(9)	6150(14)	8630(7)	98(4)
C(3)	2261(12)	5453(18)	7622(8)	67(5)
O(3)	1711(9)	4735(13)	7786(6)	85(4)
C(4)	2513(10)	8066(15)	7845(7)	51(4)
O(4)	2105(8)	8806(12)	8140(6)	85(4)
C(5)	3885(13)	5408(19)	6872(9)	74(5)
O(5)	4314(9)	4687(14)	6584(7)	93(4)
P(1)	2261(3)	7295(4)	6349(2)	$41(1)^{a}$
C(6)	581(6)	6639(10)	5708(4)	57(4)
C(7)	- 375	6444	5674	71(5)
C(8)	-880	6504	6239	76(5)
C(9)	-430	6759	6838	70(5)
C(10)	526	6954	6872	67(5)
C(11)	1032	6894	6307	48(4)
C(12)	3356(7)	7038(7)	5253(5)	60(4)
C(13)	3750	6337	4755	80(6)
C(14)	3501	5056	4653	73(5)
C(15)	2858	4475	5049	74(5)
C(16)	2464	5176	5547	63(5)
C(17)	2713	6457	5649	46(4)
N(1)	2348(8)	8875(11)	6176(6)	47(3)
P(2)	1768(3)	9522(4)	5505(2)	$48(1)^{a}$
C(18)	1515(5)	11938(11)	6151(5)	66(5)
C(19)	961	12916	6390	88(6)
C(20)	- 2	12799	6352	82(6)
C(21)	-410	11704	6075	89(6)
C(22)	144	10726	5836	73(5)
C(23)	1107	10843	5874	51(4)
C(24)	2457(5)	10856(10)	4485(5)	60(4)
C(25)	3119	11505	4132	69(5)
C(26)	4000	11727	4410	69(5)
C(27)	4221	11299	5040	69(5)
C(28)	3559	10650	5394	61(4)
C(29)	2678	10428	5116	46(4)
B(1)	3427(7)	3469(8)	2512(5)	80(7)
$F(1) \frac{b}{c}$	3295(13)	4398(16)	2081(9)	37(7)
$F(2)^{b}$	3465(18)	2349(18)	2214(11)	143(16)
$F(3)^{p}$	4199(14)	3671(20)	2860(10)	74(10)
F(4) "	2717(14)	3458(25)	2908(10)	125(15)
F(5) ^c	3769(13)	3816(16)	3119(9)	54(7)
F(6)	2892(12)	2391(16)	2555(9)	42(7)
F(7) ^c	4160(13)	3212(20)	2119(9)	82(9)
F(8) ^c	2915(12)	4457(14)	2243(8)	21(5)

^{*a*} Äquivalente isotrope *U* berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors. BF₄-Anion fehlgeordnet. ^{*b*} g = 0.3698. ^{*c*} g = 0.6302.

Re(1)-C(1)	200.3(16)	Re(1)-C(2)	198.3(16)
Re(1)-C(3)	198.0(18)	Re(1) - C(4)	196.8(15)
Re(1)-C(5)	201.5(19)	Re(1) - P(1)	247.8(4)
C(1)-O(1)	113.0(20)	C(2)-O(2)	114.1(21)
C(3)-O(3)	115.0(22)	C(4)–O(4)	115.5(20)
C(5)-O(5)	115.0(23)	P(1)-C(11)	182.3(10)
P(1)C(17)	182.2(10)	P(1) - N(1)	168.8(13)
N(1)-P(2)	172.2(12)	P(2)-C(23)	185.2(11)
P(2)-C(29)	182.6(10)		
C(1)-Re(1)-C(2)	89.6(6)	C(1) - Re(1) - C(3)	179.1(7)
C(2)-Re(1)-C(3)	90.1(7)	C(1)-Re(1)-C(4)	91.3(6)
C(2) - Re(1) - C(4)	89.3(6)	C(3)-Re(1)-C(4)	89.5(7)
C(1) - Re(1) - C(5)	88.0(7)	C(2)-Re(1)-C(5)	89.3(7)
C(3) - Re(1) - C(5)	91.2(7)	C(4) - Re(1) - C(5)	178.5(6)
C(1) - Re(1) - P(1)	87.7(4)	C(2) - Re(1) - P(1)	177.3(5)
C(3) - Re(1) - P(1)	92.6(5)	C(4) - Re(1) - P(1)	90.6(4)
C(5) - Re(1) - P(1)	90.7(5)	Re(1)-C(1)-O(1)	179.1(13)
Re(1)-C(2)-O(2)	175.4(15)	Re(1)-C(3)-O(3)	177.5(16)
Re(1) - C(4) - O(4)	177.7(13)	Re(1) - C(5) - O(5)	176.8(16)
Re(1) - P(1) - C(11)	118.4(3)	Re(1) - P(1) - C(17)	110.7(3)
Re(1) - P(1) - N(1)	110.9(4)	C(11) - P(1) - N(1)	107.0(5)
C(17) - P(1) - N(1)	105.5(5)	P(1)-C(11)-C(6)	120.5(3)
P(1)-C(11)-C(10)	119.3(3)	P(1)-C(17)-C(12)	121.2(3)
P(1)-C(17)-C(16)	118.6(3)	P(1)-N(1)-P(2)	120.8(7)
N(1)-P(2)-C(23)	101.9(5)	N(1)-P(2)-C(29)	102.5(5)
P(2)-C(23)-C(18)	123.8(3)	P(2)-C(23)-C(22)	116.1(3)
P(2)-C(29)-C(24)	115.4(3)	P(2)-C(29)-C(28)	124.5(3)

Tabelle 4b Bindungslängen (pm) und Bindungswinkel (°) von 1a

Wird der diphosphanverbrückte Komplex 2b mit einem Überschuß an wäßriger Natronlauge versetzt, so entsteht der Hydridokomplex 4b:

$$[(OC)_{5}RePPh_{2}CH_{2}Ph_{2}PRe(CO)_{5}]^{2+}$$

$$(2b)$$

$$\downarrow 2 OH^{-}$$

$$(HOOC)(OC)_{4}RePPh_{2}CH_{2}Ph_{2}PRe(CO)_{4}(COOH)$$

$$(2b')$$

$$\downarrow + 2OH^{-}$$

$$- 2H_{2}O$$

$$(-OOC)_{4}(OC)RePPh_{2}CH_{2}Ph_{2}PRe(CO)_{4}(COO^{-})$$

$$(2b'')$$

$$\downarrow - 2 CO_{2}$$

$$+ 2 H_{2}O/- 2 OH^{-}$$

$$(H)(OC)_{4}RePPh_{2}CH_{2}Ph_{2}PRe(CO)_{4}(H)$$

$$(4b)$$

IR-spektroskopisch läßt sich bei der Umsetzung von 2b mit einer äquimolaren

Fig. 2. Struktur von 2e im Kristall.

Menge an Hydroxidionen der im ersten Reaktionsschritt zu erwartende Hydroxycarbonylkomplex **2b'** nachweisen ($\nu(CO) = 1575 \text{ cm}^{-1}$). Die aus $[(OC)_5 \text{ReL}]^+$ (L = PPh₃, PPh₂H) mit Hydroxid entstehenden Hydroxycarbonylkomplexe decarboxylieren unter diesen Bedingungen ebenfalls nicht [1]. Möglicherweise erfolgt die Decarboxylierung über den anionischen Metallacarboxylatkomplex **2b''** (vgl. [18]).

Das Spektrum des Komplexes 4a weist im IR-Spektrum die für Hydroxycarbonylkomplexe typischen Absorptionen einer Acyl- und einer Hydroxylgruppe auf [19].

Das ¹H-NMR-Spektrum von **4a** zeigt nur Phenylresonanzen. Eine NH-Resonanz ist nicht zu beobachten, was auf einen raschen Austausch des Protons der Hydroxycarbonylgruppe mit dem Aminproton zurückgeführt werden kann. Die für hydridische Protonen charakteristische Resonanz erscheint im Spektrum von **4b** bei -5 ppm [20].

Reaktionen von 1 und 2 mit Hydroxidionen in methanolischer Lösung

1a, 2c und 2d liefern in Methanol mit wäßriger Natronlauge die Methoxycarbonyl-Verbindungen 5a-c:

 $MeO_{2}C(OC)_{4}RePPh_{2}NHPPh_{2}$ (5a) $MeO_{2}C(OC)_{4}RePPh_{2}CH_{2}CH_{2}PPh_{2}Re(CO)_{4}CO_{2}Me$ (5b) $MeO_{2}C(OC)_{4}RePPh_{2}CH_{2}CH_{2}AsPh_{2}Re(CO)_{4}CO_{2}Me$ (5c)

Die Form und die Lage der ν (CO)-Banden im IR-Spektrum (Tab. 6) beweisen das Vorliegen neutraler Tetracarbonylkomplexe mit *cis*-ständigen Heteroliganden [21a]. Eine langwellige Verschiebung der ν (NH)-Bande von Komplex **5a** im Vergleich zum Edukt und deren breite Kontur deuten ebenso auf Wasserstoffbrückenbindungen hin wie die ungewöhnlich tiefe Lage der Alkoxycarbonylbande [21b]. Eine NH-Resonanz im ¹H-NMR-Spektrum von Komplex **5a** ist nicht zu beobachten. Die Brückenprotonen der Komplexe **5b** und **5c** sind gegenüber den Ausgangsverbindungen leicht zu höherem Feld verschoben. Interessant ist, daß die Protonen der Alkoxygruppen bei **5c** als zwei sehr nahe beieinander liegende Signale erscheinen, die die Inäquivalenz beider Gruppen beweisen.

Reaktion von 1 und 2 mit Azid-Ionen

Mit Azidionen setzt sich 1a unter Stickstoff-Entwicklung in einer dem Säureazid-Abbau analogen Reaktion [22] zum Isocyanato-Komplex 6a um:

$$[(OC)_5 \text{RePPh}_2 \text{NHPPh}_2]^+ + N_3^- \rightarrow (OC)_4 (OCN) \text{RePPh}_2 \text{NHPPh}_2 + N_2$$
(1a)
(6a)

Tabelle 5a

Atomkoordinaten (×10⁴) und isotrope Thermalparameter ($pm^2 \times 10^{-1}$) von 2c

Atom	x	у	Z	U	
Re(1)	2437(1)	6770(1)	9877(1)	52(1) ^a	
C(1)	1848(18)	7209(13)	8436(14)	68(5)	
O(1)	1458(13)	7503(9)	7577(10)	83(4)	
C(2)	3048(17)	5602(11)	9581(12)	60(4)	
O(2)	3340(14)	4921(9)	9446(10)	87(4)	
C(3)	3088(18)	6394(12)	11384(13)	63(5)	
O(3)	3467(13)	6209(9)	12246(10)	83(4)	
C(4)	1795(19)	7902(13)	10220(13)	65(5)	
O(4)	1362(13)	8475(8)	10438(9)	75(4)	
C(5)	4340(22)	7233(14)	10397(16)	82(6)	
O(5)	5434(17)	7540(11)	10654(12)	110(5)	
P(1)	- 33(4)	6236(3)	9138(3)	$46(2)^{a}$	
C(6)	- 347(15)	5438(10)	9958(11)	49(4)	
C(7)	-142(7)	5445(7)	7325(8)	65(5)	
C(8)	- 854	5035	6324	75(5)	
C(9)	-2323	4902	5809	64(5)	
C(10)	- 3080	5179	6295	69(5)	
C(11)	-2368	5589	7296	58(4)	
C(12)	899	5722	7811	47(4)	
C(13)	-1574(12)	7715(8)	8121(8)	75(5)	
C(14)	-2364	8469	8008	77(6)	
C(15)	- 2797	8646	8745	89(6)	
C(16)	-2441	8070	9594	104(7)	
C(17)	-1651	7317	9 707	67(5)	
C(18)	-1217	7139	8970	55(4)	
B (1)	4430(9)	6027(6)	7728(7)	100(9)	
F (1)	3245(12)	5633(9)	7570(10)	137(5)	
F(2)	5563(12)	5544(9)	8393(10)	150(6)	
F(3)	4376(13)	6114(10)	6789(10)	154(6)	
F(4)	4538(17)	6818(9)	8159(14)	272(12)	

^a Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors.

e e u ;	e (·		
$\overline{\operatorname{Re}(1)-C(1)}$	196.0(20)	Re(1)-C(2)	202.3(19)	
Re(1) - C(3)	200.3(18)	Re(1)-C(4)	201.8(21)	
Re(1) - C(5)	194.4(23)	Re(1) - P(1)	247.5(5)	
C(1)-O(1)	117.8(24)	C(2)-O(2)	113.1(24)	
C(3)-O(3)	113.1(23)	C(4)-O(4)	111.3(26)	
C(5)-O(5)	115.2(29)	P(1) - C(6)	185.0(18)	
P(1)-C(12)	182.9(11)	P(1) - C(18)	181.8(14)	
C(6)-C(6a)	151.1(31)	B(1) - F(1)	133.6(17)	
B(1) - F(2)	133.6(14)	B(1) - F(3)	133.6(20)	
B(1) - F(4)	133.6(17)			
C(1)-Re(1)-C(2)	92.3(8)	C(1)-Re(1)-C(3)	176.5(7)	
C(2)-Re(1)-C(3)	90.3(7)	C(1)-Re(1)-C(4)	90.1(8)	
C(2)-Re(1)-C(4)	117.0(9)	C(3) - Re(1) - C(4)	87.2(8)	
C(1) - Re(1) - C(5)	89.6(9)	C(2)-Re(1)-C(5)	90.0(9)	
C(3)-Re(1)-C(5)	88.1(8)	C(4) - Re(1) - C(5)	91.7(9)	
C(1) - Re(1) - P(1)	87.6(6)	C(2)-Re(1)-P(1)	91.3(5)	
C(3) - Re(1) - P(1)	94.6(5)	C(4) - Re(1) - P(1)	87.1(5)	
C(5) - Re(1) - P(1)	177.0(6)	Re(1)-C(1)-O(1)	176.9(18)	
Re(1)-C(2)-O(2)	175.2(19)	Re(1) - C(3) - O(3)	177.8(17)	
Re(1) - C(4) - O(4)	173.0(20)	Re(1)-C(5)-O(5)	176.1(17)	
Re(1) - P(1) - C(6)	117.1(4)	Re(1) - P(1) - C(12)	117.4(4)	
C(6) - P(1) - C(12)	103.1(6)	Re(1) - P(1) - C(18)	110.5(4)	
C(6) - P(1) - C(18)	103.5(8)	P(1)-C(6)-C(6a)	112.6(19)	
P(1)-C(12)-C(7)	122.5(3)	P(1)-C(12)-C(11)	117.4(3)	
P(1)-C(18)-C(13)	117.1(5)	P(1)-C(18)-C(17)	122.6(4)	
F(1)-B(1)-F(2)	109.5(11)	F(1)-B(1)-F(3)	109.5(10)	
F(2)-B(1)-F(3)	109.5(12)	F(1)-B(1)-F(4)	109.5(14)	
F(2)-B(1)-F(4)	109.5(10)	F(3)-B(1)-F(4)	109.5(13)	

Bindungslängen (pm) und Bindungswinkel (°) von 2c

6a wandelt sich in Lösung langsam unter CO-Abspaltung in 6b um:

Dieses Verhalten monokoordinierter, zweizähniger Phosphanliganden wurde bereits bei anderen Komplexen beobachtet [13,23]. Analog zu 1a reagieren die verbrückten Systeme 2c und 2d mit Azid-Ionen unter Bildung von 6c,d:

$$OCN(OC)_{4}RePPh_{2}CH_{2}CH_{2}PPh_{2}Re(CO)_{4}NCO \qquad (6c)$$
$$OCN(OC)_{4}RePPh_{2}CH_{2}CH_{2}AsPh_{2}Re(CO)_{4}NCO \qquad (6d)$$

Charakteristisch für die Isocyanatokomplexe 6 ist die intensive, breite IR-Bande bei 2250 cm⁻¹. Das Auftreten von drei Banden im Carbonylbereich der Tetracarbonylkomplexe beweist die *cis*-Anordnung der Heteroliganden. Drei nahezu gleich intensive Carbonylbanden im IR-Spektrum von 6b lassen auf faciale Anord-

Tabelle 5b

Komplex	ν(CO)	ν(C=O) ^b	Sonstige b	
4 a	2097m 2007s,sh 1991vs 1965m	1560m	2650w	OH
4b	2081m 1987s,sh 1974vs 1955s,sh			
5a	2097s 2038sh 2007sh 1992vs 1965s	1585m	3130w	NH
5b	2098m 2009vs 1991vs 1963s	1602m		
5c	2100m 2035s 2005sh 1995vs 1950s	1610m		
6a	2109s 2007vs 1953s		3270w	NH
			2240s	NCO
6b	2032vs 1955s 1905vs		2242vs	NCO
6c	2108m 2021m 2002vs 1953s		2246s	NCO
6d	2107m 2017s 2002vs 1952m		2245s	NCO

IR-spektroskopische Daten von 4-6 (in cm⁻¹)^a

^a In CHCl₃. ^b In Nujol.

Tabelle 6

nung der Liganden schließen [24]. Die Lage und die scharfe Form der Bande im IR-Spektrum von 6a zeigt das Fehlen von Wasserstoffbrückenbindungen.

Im ¹H-NMR-Spektrum (Tab. 7) koppelt das Aminproton des Komplexes **6a** mit den Phosphoratomen zu einem Doppeldublett, was deren chemische Inäquivalenz beweist. Durch die Reaktion zu Neutralkomplexen erfahren die Protonen der Ethylen-Brücken von **6c**,d einen Hochfeldshift, während die Phosphorsignale nur wenig zu tiefem Feld verschoben werden.

Kristallstruktur von 6b (Tab. 8, 9)

Die Kristallstrukturanalyse zeigt für das Molekül **6b** (Fig. 3) einen verzerrten Oktaeder. Ursache hierfür ist die nahezu planare Re(1)-P(1)-N(1)-P(2)-Gruppe mit einer nur wenig vom Tetraederwinkel abweichenden Anordnung der beiden Phosphoratome um das Stickstoffatom. Dafür ist der P(1)-Re-P(2)-Bindungswinkel stark deformiert; er weicht mit etwa 66° sehr stark vom idealen Wert ab, wie schon früher an [Rh(O₂)(Ph₂PNHPPh₂)₂]⁺ festgestellt wurde [25].

Tabelle 7

Komplex	δ(Ph)	$\delta(CH_2)$		
4a	7.7–7.3(m)			
4b	7.6–7.2(m)	3.47(dd)	– 5.21(dd) (Re)H	
5a	7.6–7.3(m)		3.52(s) OMe	
5b	7.5-7.3(m)	2.39(s)	3.20(s) OMe	
5c	7.6-7.3(m)	2.41(br)	3.20(s) 3.19(s) OMe	
6a	7.7–7.3(m)		4.89(dd) NH	
6с	7.6–7.3(m)	2.50(s)		
6d	7.6-7.3(m)	2.5(br)		
	$\overline{\delta(^{31}P)}$			
5b	4(s,br)			
ക	4(s,br)			

¹H- und ³¹P-NMR-spektroskopische Daten von **4–6** (δ in ppm) (in CD₂Cl₂, Lösungsmittel als interner Standard)

Diese Verzerrung der Struktur ist naturgemäß größer wie bei vergleichbaren Komplexen mit $Ph_2PCH_2CH_2PPh_2$ -Liganden, die fünfgliedrige Chelatringe ausbilden [26]. Die Bindungswinkel am N-Atom (104°) und die P-N-Abstände (168 pm) in **6b** entsprechen denen in [Rh(O₂)(Ph₂PNHPPh₂)₂]⁺ [25]. Auffallend ist die Donorwirkung des NCO-Liganden, die zu einer erheblich kürzeren Bindungslänge zwischen dem Rheniumatom und dem *trans*-ständigen Kohlenstoffatom C26 führt. Schließlich beweist die faciale Anordnung der Heteroliganden, daß – wie auch aus den IR-Spektren geschlossen werden kann – der Angriff des

Tabelle 8

Atom	x	у	Z	U
$\overline{\text{Re}(1)}$	1023(1)	6594(1)	6956(1)	36(1) ^a
P (1)	847(1)	7849(2)	7571(1)	$37(1)^{a}$
C(1)	881(3)	9929(5)	7753(4)	73(3)
C(2)	1203	10870	7973	80(3)
C(3)	1880	10965	8265	82(3)
C(4)	2235	10119	8337	83(3)
C(5)	1913	9178	8117	60(2)
C(6)	1235	9083	7825	40(2)
C(7)	454(4)	7203(6)	3432(4)	83(3)
C(8)	578	7447	4108	119(5)
C(9)	1198	7956	4753	119(5)
C(10)	1694	8221	4722	116(5)
C(11)	1570	7977	4046	84(3)
C(12)	950	7468	3401	49(2)
N(1)	-31(3)	7967(5)	6763(4)	39(1)
P(2)	- 194(1)	7240(2)	6047(1)	37(1) ^a
C(13)	-1637(3)	7003(3)	5124(4)	62(2)
C(14)	- 2255	6447	4729	75(3)
C(15)	- 2225	5402	4772	75(3)
C(16)	-1575	4912	5209	78(3)
C(17)	- 956	5467	5603	53(2)
C(18)	987	6513	5561	47(2)
C(19)	- 551(4)	9105(4)	5291(3)	61(2)
C(20)	- 790	9730	4659	79(3)
C(21)	- 967	9323	3982	68(3)
C(22)	904	8292	3938	72(3)
C(23)	665	7668	4570	63(2)
C(24)	- 489	8075	5247	39(2)
C(25)	2030(5)	6318(7)	7844(5)	46(2)
O(1)	2631(4)	6202(6)	8380(5)	75(2)
C(26)	1264(4)	7554(6)	6590(5)	42(2)
O(2)	1444(4)	8166(6)	6390(5)	74(2)
C(27)	917(5)	5614(7)	6262(5)	54(2)
O(3)	813(4)	5050(7)	5811(5)	87(2)
N(2)	785(4)	5491(6)	7416(4)	49(2)
C(28)	854(5)	4931(8)	7838(6)	57(2)
O(4)	912(5)	4338(7)	8288(5)	96(3)
O(5)	1836(5)	1360(7)	2638(5)	87(2)
C(29)	2397(8)	1388(11)	2781(9)	91(4)

Atomkoordinaten ($\times 10^4$) und isotrope Thermalparameter (pm² $\times 10^{-1}$) von **6**b

^a Äquivalente isotrope U berechnet als ein Drittel der Spur des orthogonalen U_{ii} Tensors.

Fig. 3. Struktur von 6b im Kristall.

Tabelle 9

Bindungslängen (pm) und Bindungswinkel (°) von 6b

$\operatorname{Re}(1) - \operatorname{P}(1)$	243.8(3)	Re(1) - P(2)	244.7(2)	
Re(1)-C(25)	194.0(8)	Re(1)-C(26)	186.8(12)	
Re(1)-C(27)	193.2(12)	$\operatorname{Re}(1) - \operatorname{N}(2)$	214.6(11)	
P(1)-C(6)	180.3(7)	P(1) - N(1)	167.8(6)	
P(1)-C(12a)	179.2(12)	N(1) - P(2)	169.5(9)	
P(2)-C(18)	180.5(7)	P(2)-C(24)	180.8(7)	
C(25)-O(1)	114.7(10)	C(26)-O(2)	118.6(17)	
C(27)-O(3)	115.5(17)	N(2)-C(28)	113.7(17)	
C(28)–O(4)	123.1(19)	O(5)-C(29)	126.2(27)	
C(29)-C(29a)	171.9(52)			
P(1)-Re(1)-P(2)	66.2(1)	P(1)-Re(1)-C(25)	100.5(4)	
P(2)-Re(1)-C(25)	166.7(4)	P(1)-Re(1)-C(26)	93.2(3)	
P(2)-Re(1)-C(26)	91.1(3)	C(25)-Re(1)-C(26)	88.4(4)	
P(1)-Re(1)-C(27)	166.2(3)	P(2)-Re(1)-C(27)	100.1(3)	
C(25)-Re(1)-C(27)	93.2(4)	C(26)-Re(1)-C(27)	89.2(5)	
P(1)-Re(1)-N(2)	86.7(3)	P(2)-Re(1)-N(2)	90.7(2)	
C(25) - Re(1) - N(2)	89.8(4)	C(26) - Re(1) - N(2)	178.0(2)	
C(27) - Re(1) - N(2)	91.4(5)	Re(1) - P(1) - C(6)	121.4(4)	
Re(1) - P(1) - N(1)	94.8(3)	C(6)-P(1)-N(1)	107.5(3)	
Re(1) - P(1) - C(12a)	120.9(3)	N(1)-P(1)-C(12a)	106.4(5)	
P(1)-C(6)-C(1)	121.4(3)	P(1)-C(6)-C(5)	118.6(3)	
P(1)-N(1)-P(2)	104.6(5)	Re(1) - P(2) - N(1)	94.0(2)	
Re(1) - P(2) - C(18)	126.2(2)	N(1) - P(2) - C(18)	108.3(5)	
Re(1) - P(2) - C(24)	117.8(3)	N(1) - P(2) - C(24)	106.6(3)	
P(2)-C(18)-C(13)	119.5(2)	P(2) - C(18) - C(17)	120.5(2)	
P(2)-C(24)-C(19)	121.2(2)	P(2)-C(24)-C(23)	118.8(2)	
Re(1) - C(25) - O(1)	176.7(9)	Re(1)-C(26)-O(2)	177.2(6)	
Re(1) - C(27) - O(3)	176.0(7)	Re(1) - N(2) - C(28)	161.1(7)	
N(2)-C(28)-O(4)	178.0(16)	O(5)-C(29)-C(29a)	136.4(13)	

Nucleophils an einer zum Phosphanliganden cis-ständigen Carbonylgruppe erfolgt ist.

Experimenteller Teil

Die verwendeten Lösungsmittel waren, sofern erforderlich, nach Standardverfahren absolutiert [27]. Als Schutzgas wurde über Molekularsieb getrockneter Stickstoff verwendet. Die Ausgangsverbindung $(OC)_5 ReFBF_3$ wurde nach [28] dargestellt. Die Phosphan-Liganden wurde im Handel bezogen. Analysendaten siehe Tabelle 10.

$[(OC)_5 RePPh_2 NHPPh_2]^+ F_4^- (1a)$

Eine Suspension von 250 mg (0.60 mmol) (OC)₅ReFBF₃ in 5 ml Methylenchlorid wird mit 230 mg (0.60 mmol) Bis(diphenylphosphino)amin versetzt. Nach etwa 2 min erhält man eine nahezu klare, gelbliche Lösung. Etwaige Trübungen werden durch Zentrifugieren der Lösung abgetrennt. Dann wird die Lösung in 20 ml Diethylether pipettiert. Der dabei ausfallende Niederschlag wird abzentrifugiert und am Hochvakuum getrocknet.

$[(OC)_5 RePPh_2 CH_2 PPh_2]^+ BF_4^- (1b)$

Zu einer Lösung von 239 mg (0.62 mmol) dppm in 5 ml Methylenchlorid gibt man langsam eine Suspension von 257 mg (0.62 mmol) (OC)₅ReFBF₃, wobei immer gewartet wird, bis die anfängliche Trübung verschwindet. Anschließend wird die Methylenchlorid-Phase vollständig über eine Kühlfalle abgezogen und der Rückstand in 5 ml Hexan aufgenommen. Man rührt solange bei -78° C, bis ein farbloser, feinkristalliner Niederschlag erhalten wird. Dieser wird von der organischen Phase abzentrifugiert und schließlich am Hochvakuum getrocknet.

$[(OC)_5 RePPh_2CH_2CH_2Ph_2As] + BF_4^- (1c) \quad und \quad [(OC)_5 ReAsPh_2CH_2CH_2Ph_2P] + BF_4^- (1d)$

Die Darstellung erfolgt analog wie für 1b aus äquimolaren Mengen von dadpe und $(OC)_5ReFBF_3$ in Methylenchlorid.

$[(OC)_5 RePPh_2 NHPh_2 PRe(CO)_5]^{2+} (BF_4^{-})_2$ (2a)

Eine Suspension von 413 mg (1.0 mmol) $(OC)_5 ReFBF_3$ in 5 ml Methylenchlorid wird unter Rühren mit 193 mg (0.5 mmol) Bis(diphenylphosphino)amin versetzt. Dann rührt man 20 h. Eine geringe Menge eines ausgefallenen, farblosen Niederschlags von $[(OC)_5 ReOH_2]^+$ wird abgetrennt. Die verbleibende, schwach gelbe Lösung wird anschließend bei $-78^{\circ}C$ in 20 ml Diethylether pipettiert. Nach 2 h Rühren bei dieser Temperatur zentrifugiert man den Niederschlag ab und trocknet ihn am Hochvakuum.

 $[(OC)_5 RePPh_2CH_2Ph_2PRe(CO)_5]^{2+}(BF_4^{-})_2$ (2b) Analog wie für 2a aus (OC)₅ReFBF₃ und dppm.

$[(OC)_5 RePPh_2CH_2CH_2Ph_2PRe(CO)_5]^{2+}(BF_4^{-})_2$ (2c)

Zu einer Suspension von 178 mg (0.43 mmol) (OC)₅ReFBF₃ in 5 ml Methylenchlorid gibt man 86 mg (0.215 mmol) dppe. Nach 3 min erhält man eine klare Lösung, die bei Raumtemperatur in 30 ml Diethylether pipettiert wird. Hierbei fällt das Produkt als farbloser Niederschlag aus, der abgetrennt und am Hochvakuum getrocknet wird.

 $[(OC)_5 RePPh_2CH_2CH_2Ph_2AsRe(CO)_5]^{2+}(BF_4^{-})_2$ (2d) Analog wie für 2c aus (OC)₅ReFBF₃ und dadpe.

$[(OC)_5 RePPh_2H]^+BF_4^-(3)$

222 mg (0.54 mmol) (OC)₅ReFBF₃, in 5 ml Methylenchlorid suspendiert, werden mit 115 mg Tetraphenyldiphosphan versetzt. Dann wird 2 h gerührt. Man erhält eine klare Lösung, von welcher Methylenchlorid vollständig abgezogen wird. Der Rückstand wird in 10 ml Diethylether aufgenommen und bei -78 °C gerührt, bis sich ein feiner Niederschlag gebildet hat. Diesen trennt man ab und trocknet ihn am Hochvakuum.

$(OC)_4(HOOC)RePPh_2NHPPh_2$ (4a)

Zu einer Lösung von 43 mg (0.054 mmol) 1a in 3 ml Methylenchlorid gibt man unter Rühren 54 μ l (0.054 mmol) 1n wäßrige Natronlauge. Nach 5 min Rühren hat sich eine dunkelgelbe Lösung gebildet. Man trennt die organische Phase vorsichtig von der wäßrigen Phase ab, zieht Methylenchlorid vollständig über eine Kühlfalle ab und versetzt den zurückbleibenden gelben, öligen Rückstand mit 5 ml Hexan. Nach 30 min Rühren ist das Produkt als farbloser Niederschlag ausgefallen, der vom Lösungsmittel abgetrennt und am Hochvakuum getrocknet wird.

$[(OC)_4(H)RePPh_2CH_2Ph_2PRe(H)(CO)_4] (4b)$

Man löst 205 mg (0.17 mmol) 2b in 5 ml Aceton und gibt 3 ml wäßrige 1nNatronlauge hinzu. Dabei verfärbt sich die Lösung zunächst blau, wird dann türkisund schließlich orangefarben (Gasentwicklung). Nach 10 min ist ein farbloser Niederschlag ausgefallen, der abgetrennt, einmal mit 5 ml Wasser gewaschen und abschließend am Hochvakuum getrocknet wird.

(OC)₄(MeOOC)RePPh₂NHPPh₂ 5a

Eine Lösung von 99 mg (0.125 mg) 1a in 5 ml Methanol wird mit 0.125 ml (0.125 mmol) 1*n* Natronlauge versetzt. Man rührt 2 h, wobei das Produkt als farbloser Niederschlag ausfällt, der abgetrennt und am Hochvakuum getrocknet wird.

$(OC)_{4}(MeOOC)RePPh_{2}CH_{2}CH_{2}Ph_{2}PRe(COOMe)(CO)_{4}$ (5b)

Man suspendiert 170 mg (0.14 mmol) 2c in 10 ml MeOH, gibt 0.32 ml (0.32 mmol) 1*n* Natronlauge hinzu und rührt 30 min. Man erhält eine klare Lösung, aus der das Produkt durch langsame Zugabe von 30 ml Wasser ausgefällt wird. Schließlich trennt man den Niederschlag ab und trocknet am Hochvakuum.

$(OC)_4(MeOOC)RePPh_2CH_2CH_2Ph_2AsRe(COOMe)(CO)_4$ (5c)

153 mg (0.12 mmol) **2d** werden in 10 ml MeOH suspendiert und mit 0.24 mmol 1n Natronlauge versetzt. Man erhält eine klare Lösung, aus der nach 2 min das Produkt als farbloser Niederschlag auszufallen beginnt. Nach 20 min Rühren wird das Produkt abzentrifugiert und am Hochvakuum getrocknet.

$(OC)_4(OCN)RePPh_2NHPPh_2$ (6a)

Man löst 85 mg (0.11 mmol) 1a in 5 ml Aceton und gibt dazu 7 mg (0.11 mmol) Natriumazid in 1 ml Wasser hinzu. Neben einer Gasentwicklung ist noch eine kurzzeitige Gelbfärbung der Lösung zu beobachten. Man rührt das Gemisch, wobei das Produkt nach 3 min auszufallen beginnt. Nach 30 min wird der Niederschlag abgetrennt und getrocknet.

$(OC)_{3}(OCN)RePPh_{2}NHPPh_{2}$ (**6b**)

6b wurde durch langsame Kristallisation aus 6a bei Raumtemperatur in Methylenchlorid erhalten.

$(OC)_4(OCN)RePPh_2CH_2CH_2Ph_2PRe(NCO)(CO)_4$ (6c)

Darstellung analog wie für 6a aus 2c und Natriumazid. Das Produkt muß jedoch, nach Beendigung der Gasentwicklung, durch vorsichtige Zugabe von Wasser ausgefällt werden.

Tabelle 10

Analytische Daten von 1-6

Verb.	Summenformel (Molmasse)	Analyse (gef. (ber.) (%))			Smp.	Ausbeute
		C	Н	N	(°C)	(%)
1a	$C_{29}H_{21}NO_5P_2BF_4Re$	43.44	2.90	1.81	120	52
	(798.5)	(43.61)	(2.65)	(1.75)		
1b	$C_{30}H_{22}O_5P_2BF_4Re$	43.30	3.09			60
	(797.5)	(45.17)	(2.78)			
lc,d	$C_{31}H_{24}O_5PAsBF_4Re$	43.61	3.18		155	57
	(855.5)	(43.52)	(2.83)			
la	$C_{34}H_{21}NO_{10}P_2B_2F_8Re_2$	34.35	2.28	1.18	250	52
	(1248.6)	(34.62)	(2.10)	(1.12)		
!b	$C_{35}H_{22}O_{10}P_2B_2F_8Re_2$	35.74	2.61			68
	(1210.6)	(34.69)	(1.82)			
2c	$C_{36}H_{24}O_{10}P_2B_2F_8Re_2$	36.27	2.40		237	70
	(1224.6)	(35.30)	(1.97)			
2d	$C_{36}H_{24}O_{10}PAsB_2F_8Re_2$	33.74	2.20		224	63
	(1268.5)	(34.08)	(1.91)			
4 a	$C_{29}H_{22}NO_{6}P_{7}Re$	47.14	3.54	1.73	85	65
	(728.7)	(47.79)	(3.04)	(1.92)		
4b	$C_{33}H_{24}O_8P_2Re_2$	39.57	3.57			70
	(982.9)	(40.32)	(2.46)			
5a	$C_{30}H_{24}NO_6P_2Re$	48.48	3.38	1.89	120	70
	(742.7)	(48.51)	(3.26)	(1.88)		
5b	$C_{38}H_{30}O_{12}P_{2}Re_{2}$	40.61	3.09		170	75
	(1113.0)	(41.00)	(2.72)			
5c	$C_{38}H_{30}O_{12}PAsRe_{2}$	39.06	2.70		150	73
	(1157.0)	(39.44)	(2.61)			
<u>ía</u>	$C_{29}H_{21}N_2O_5P_2Re$	48.38	3.20	3.77	250	69
	(725.7)	(47.99)	(2.89)	(3.86)		
ю	$C_{36}H_{24}N_2O_{10}P_2Re_2$	40.13	2.67	2.60	156	88
	(1079.0)	(40.07)	(2.24)	(2.59)		
5d	$C_{36}H_{24}N_2O_{10}PAsRe_2$	38.70	2.46	2.50	144	78
	(1122.9)	(38.50)	(2.15)	(2.49)		

$(OC)_4(OCN)RePPh_2CH_2CH_2Ph_2AsRe(OCN)(CO)_4$ (6d) Analog zur Darstellung von 6a aus 2d und Natriumazid.

Kristallstrukturbestimmung von 1a [29]

Ein Bruchstück von 1a der Größe $0.5 \cdot 0.1 \cdot 0.05$ mm wurde im Vakuum in ein Markröhrchen eingeklebt. Kristalldaten: $C_{29}H_{21}BF_4NO_5P_2Re$, M = 798.4 g/mol, Raumgruppe $P2_1/c$ (Nummer 14), a 1444.4(8), b 1040.5(4), c 2053(1) pm, β 92.14(5)°, V 3.083(3) nm³, Z = 4, ρ_{ber} 1.72 g cm⁻³, $\mu(\text{Mo-}K_{\alpha})$ 41.57 cm⁻¹. Datensammlung und Auswertung: Nicolet-R3-Diffraktometer, Meßtemperatur 30°C, ω -Scan, 2 Θ -Bereich 4–50°, Scangeschwindigkeit 4–30°/min (Minimum bei I < 400, Maximum bei I > 3000 counts/s), 8947 Reflexe gemessen $(\pm h, \pm k, \pm l)$, zu 5049 unabhängigen gemittelt ($R_{\text{Merge}} = 0.0361$), davon 2919 beobachtet [$I > 2\sigma(I)$], empirische Absorptionskorrektur anhand von 330 Messungen im ψ -Scan (min. relative Transmission 0.66). Strukturanalyse und Verfeinerung: Lösung mit dem SHELXTL-Programmsystem, Patterson und Fourierrecycling, 159 Parameter verfeinert (Re, P anisotrop, C, H, N, O, B, F isotrop), Phenylringe als regelmäßige Sechsecke, H-Atome in berechnete Lagen eingesetzt, das stark fehlgeordnete BF₄-Anion als zwei überlagerte Tetraeder verfeinert, R = 0.0607, $R_w = 0.0571$ [$w = 1/(\sigma^2(F) + \sigma^2(F))$] $0.0006 \cdot F^2$), maximale Restelektronendichte $1.61 \cdot 10^{-6} \text{ e} \cdot \text{pm}^{-3}$, minimale Restelektronendichte $-0.88 \cdot 10^{-6} \text{ e} \cdot \text{pm}^{-3}$.

Kristallstrukturbestimmung von 2c [29]

Ein Bruchstück von **2c** der Größe $0.3 \cdot 0.2 \cdot 0.2$ mm wurde im Vakuum in ein Markröhrchen eingeklebt. Kristalldaten: C₃₆H₂₄B₂F₈O₁₀P₂Re₂, M = 1224.5 g/mol, Raumgruppe $P2_1/c$ (Nr. 14), a 1090.6(4), b 1525.3(9), c 1447.3(7) pm, β 120.65(3)°, V 2.071(2) nm³, Z = 2, ρ_{ber} 1.96 g cm⁻³, μ (Mo- K_{α}) 60.82 cm⁻¹. Datensammlung und Auswertung: Nicolet-R3-Diffraktometer, Meßtemperatur 30°C, ω -Scan, 2 Θ -Bereich 4–50°, Scangeschwindigkeit 4–30°/min, (Minimum bei I < 400, Maximum bei I > 3000 counts/s), 3608 Reflexe gemessen $(+h, +k, \pm l)$, zu 3163 unabhängigen gemittelt ($R_{Merge} = 0.0122$), davon 2224 beobachtet [$I > 2\sigma(I)$], empirische Absorptionskorrektur anhand von 396 Messungen im ψ -Scan (min. relative Transmission 0.59). Strukturanalyse und Verfeinerung: Lösung mit dem SHELXTL-Programmsystem, Patterson und Fourierrecycling, 108 Parameter verfeinert, Phenylringe als regelmäßige Sechsecke, H-Atome in berechnete Lagen eingesetzt, Re, P anisotrop, C, H, B, F isotrop verfeinert, das stark fehlgeordnete BF₄-Anion wurde als Tetraeder verfeinert, R = 0.0604, $R_w = 0.0616$ [$w = 1/(\sigma^2(F) + 0.0005 \cdot F^2$)], maximale Restelektronendichte 1.76 $\cdot 10^{-6}$ e \cdot pm⁻³.

Kristallstrukturbestimmung von 6b [29]

Ein Bruchstück von **6b** der Größe $0.7 \cdot 0.6 \cdot 0.4$ mm wurde an Luft vermessen. Kristalldaten: C₂₈H₂₁N₂O₄P₂Re, M = 697.6 g/mol, Raumgruppe C2c (Nr. 15), a 2617.5(6), b 1332.4(4), c 2311.8(5) pm, β 134.14(2)°, V 5.786(3) nm³, Z = 8, ρ_{ber} 1.60 g cm⁻³, μ (Mo- K_{α}) 44.04 cm⁻¹. Datensammlung und Auswertung: Nicolet-R3-Diffraktometer, Meßtemperatur 30°C, ω -Scan, 2 Θ -Bereich 4–50°, Scangeschwindigkeit 4–30°/min, (Minimum bei I < 400, Maximum bei I > 3000 counts/s), 9932 Reflexe gemessen (+h, +k, ± 1), zu 4997 unabhängigen gemittelt ($R_{Merge} = 0.0343$), davon 4506 beobachtet [$I > 2\sigma(I)$], empirische Absorptionskorrektur anhand von 360 Messungen im ψ -Scan (min. relative Transmission 0.80). Strukturanalyse und Verfeinerung: Lösung mit dem SHELXTL-Programmsystem, Patterson und Fourierrecycling, 124 Parameter verfeinert (Re, P anisotrop, C, H, N, O isotrop), Phenylringe als regelmäßige Sechsecke, H-Atome in berechnete Lagen eingesetzt, die Atome C(29) und O(5) stammen von einem Lösungsmittelmolekül und sind schlecht lokalisierbar, R = 0.0557, $R_w = 0.0631$ [$w = 1/(\sigma^2(F) + 0.0006 \cdot F^2)$], maximale Restelektronendichte $1.55 \cdot 10^{-6} \text{ e} \cdot \text{pm}^{-3}$, minimale Restelektronendichte $-1.18 \cdot 10^{-6} \text{ e} \cdot \text{pm}^{-3}$.

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie (Doktoranden-Stipendium für P. Steil) gilt unser aufrichtiger Dank für großzügige Förderung. Herrn Professor Dr. B. Wrackmayer, Universität Bayreuth, danken wir herzlich für NMR-Messungen, Herrn Professor Dr. A. Schmidpeter, München, für wertvolle Diskussionen, Herrn Professor Dr. J. Ellermann, Erlangen, für wertvolle Hinweise und Herrn M. Steimann für Mithilfe bei den Röntgenstrukturanalysen.

Literatur

- 1 P. Steil, W. Sacher, P.M. Fritz und W. Beck, J. Organomet. Chem., 362 (1989) 363.
- 2 Vgl. z.B. C.A. McAuliffe und W. Levason, Phosphine, Arsine and Stibine Complexes of the Transition Elements. Elsevier, Amsterdam, 1979.
- 3 Zur Koordination von (Ph₂P)₂NH vgL z.B. J. Ellermann und W. Wend, New J. Chem., 10 (1986) 313 und dort zitierte Literatur.
- 4 R.J. Puddephatt, Chem. Soc. Rev., 12 (1983) 99.
- 5 W. Beck und K. Sünkel, Chem. Rev., 88 (1988) 1405.
- 6 H. Nöth und L. Meinel, Z. Anorg. Allg. Chem., 349 (1967) 225.
- 7 J. Ellermann und L. Mader, Z. Naturforsch. B., 35 (1980) 307.
- 8 J. Ellermann, G. Szucsanyi, K. Geibel und E. Wilhelm, J. Organomet. Chem., 263 (1984) 297.
- 9 C.T. Hunt und A.L. Balch, Inorg. Chem., 20 (1981) 2267.
- 10 J. Ellermann und W.H. Gruber, Z. Naturforsch, B, 28 (1973) 310.
- 11 A. Schmidpeter und H. Rossknecht, Z. Naturforsch. B, 26 (1971) 81.
- 12 E. Moser, E.O. Fischer, W. Bathelt, W. Gretner, L. Knauss und E. Louis, J. Organomet. Chem., 19 (1969) 377.
- 13 J. Ellermann und W. Wend, J. Organomet. Chem., 258 (1983) 21.
- 14 J. Ellermann, N. Geheeb, G. Zoubek und G. Thiele, Z. Naturforsch. B, 32 (1977) 1271.
- 15 D.E.C. Corbridge, The Structural Chemistry of Phosphorus, Elsevier, Amsterdam, 1974; T.S. Cameron und C.K. Prout, J. Chem. Soc. C, (1969) 2289; J.C. Gallucci und R.R. Holmes, J. Am. Chem. Soc., 102 (1980) 4379.
- 16 D. Drew, D.J. Darensbourg und M.Y. Darensbourg, Inorg. Chem., 14 (1975) 1579; R.C. Bush und R.J. Angelici, J. Am. Chem. Soc., 108 (1986) 2735.
- 17 W. Hieber und F. Leutert, Z. Anorg. Allg. Chem., 204 (1932) 145; Th. Kruck, M. Höfler und M. Noack, Chem. Ber., 99 (1966) 1153; für neuere Literatur über Hydroxycarbonyl-Komplexe siehe M.A. Bennett, J. Mol. Catal., 41 (1987) 1; M.A. Bennett, G.B. Robertson, A. Rokicki und W.A. Wickramsinghe, J. Am. Chem. Soc., 110 (1988) 7098; H. Suzuki, H. Omori und Y. Moro-oka, J. Organomet. Chem., 327 (1987) C47. I.S. Kolomnikov, T.V. Lysyak, S.L. Rusakov und Yu.Yu. Kharitonov, Russ. Chem. Rev., 57 (1988) 406.
- 18 J.R. Sweet und W.A.G. Graham, Organometallics. 1 (1982) 982.
- 19 N. Grice, S.C. Kao und R. Pettit, J. Am. Chem. Soc., 101 (1979) 1627.
- 20 H. Flitcroft, J.M. Leach und F.J. Hopton, J. Inorg. Nucl. Chem., 32 (1970) 137.

- (a) Die cis-Struktur von (OC)₄Mn(PPh₃)CO₂Me wurde durch Röntgenstrukturanalyse gesichert. D.E. Williams, S.K. Mandal und D.H. Gibson, Acta Crystallogr., C44 (1988) 1738; (b) M.A. Bennett und A. Rokicki, Organometallics, 4 (1985) 180; J. Weidlein, U. Müller und K. Dehnicke, Schwingungsspektroskopie, Thieme Verlag, Stuttgart, 1982, S. 50.
- 22 W. Beck, H. Werner, H. Engelmann und H.S. Smedal, Chem. Ber., 101 (1968) 2143.
- 23 Vgl. z.B. J.R. Angelici und G.C. Faber, Inorg. Chem., 10 (1971) 514; F.A. Cotton und R. Poli, Inorg. Chem., 25 (1986) 3703.
- 24 R.J. Angelici, F. Basolo und A.J. Poe, J. Am. Chem. Soc., 85 (1963) 2215.
- 25 J. Ellermann, E.F. Hohenberger, W. Kehr, A. Pürzer und G. Thiele, Z. Anorg. Allg. Chem., 464 (1980) 45.
- 26 J.A. McGinnety, N.C. Payne und J.A. Ibers, J. Am. Chem. Soc., 91 (1969) 6301.
- 27 "Trocknen im Labor", Broschüre aus der Reihe "Reagenzien" der Firma Merck.
- 28 K. Raab und W. Beck, Chem. Ber., 117 (1984) 3169; Inorg. Synth., Vol. 26, im Druck.
- 29 Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-53428, der Autoren und des Zeitschriftenzitats angefordert werden.